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of hi!'; cOl11rn:~:;ion data with a T:1ylor-series expansion 
of V in po\\'e:rs of l' about P= 0 (the rest he put in 
tabubr form) : 

where 

and 
(dV /t! 1')r=o= - Vol Eo 

(d~V/dP2)p=O= Vo(1+Eo')/Bo2 . 

JIe: found Ih:\t, within (he :1ccuracy of his elata, this 
equa (ion ga \'l; a good representation of the compression 
of ma ny substance,.;. Rc:cently Anderson and Schreibcr40 

han! determined the " alues of Bo, 130', and 130", where 
Hu" i:-; the se:cond derivative of. the bulk modulus evalu­
:\(ed :It 1 atm, for polycrystalline ma.gnesium oxide. 
Thl')' used this data in conjunction with Eq. (18), 
c:xpanded to include the :tdditional terms in p3 and p4 
to cxprcss the equation of state of MgO . Examinatio~ 
of lh is type of exp:msion, however, shows that it does 
not meet all the s tipulations required for a satisf,tctory 
p-V relation. Since the coefficients of all the odd 
powers of P \\'ill be Ilega tive and the coefflcien ts of 
al l the even powers will be positive, the expansion 
pI:ecli~ts tha~ the volume will approach negative infinity, 
\l'lth Il1crc:1smg pressure, if it is cut off at an odd power 
of l' and th:tt it will :lpproach positive infinity when 
the last te m: ill\'olves all even power of P. In the 
buter case the volume will also be a double-valued 
func( ion of the pre~sure . 

In another approach to a P-V equation, MurnaghanH 

has suggested expanding the bulk modulus as a function 
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FlG. 9. The isothermal bulk modulus 13 of liquid lIg vs pres­
sure at several temperatures. 

~o O. L. Anderson and E. Schreiber, ]. Geophys. Res. 70, 
5241 (1965) . 

<I F. D. ::'IT urnaghan, Froc. Symp. App!. Math., Brown Uni­
versity, Providence, R.I., 1947 1,167 (1949). 

TAD!.F. VII. Bulk modulus of II;:.' 

T (0C) 
P (kbar) 

21. 9° 40.so 52.9° 

0 248.4 243.1 239.6 
1 257.6 252.4 248 . '.> 
2 266.6 261.3 257.9 
3 275.3 270 .1 266 .7 
·1 2840.0 278 .7 27':;.4 
5 292.5 287.3 2~3.9 
6 300 .8 295.6 202 .3 
7 309. 1 303.9 :;00 .5 
8 317 312 309 
9 325 320 317 

]0 333 328 325 
11 341 336 333 
12 349 344 341 
13 357 352 348 

" Units of kilohars. 

of P, according to the relation 

B= - V(dP/dV) = Bo+Bo' P. (19) 

On integration this gives the so-called "Murnaghan 
logarithmic equation," 

In(Vo/V) = (1/ Bo') (In[ (Bo+ Eo' P) / Eo] ), (20) 

which satisfies the listed requirements . Equation (19) 
can be expanded to include terms of higher power in 
the pressure, but this may lead to peculiarities in the 
resulting pressure-volume expression: If the bulk mod­
ulus expression is expanded, for example, to include Bo" 
and this coefficient is negative, the bulk m odulus will 
eventually pass through a maximw11 with pressure and 
then become negative. Birch42 .43 has used Murnaghan's4.' 
theory of finite str:lin and a series expansion of F in 
terms of V to derive the equation 

P= ~Bo[ (Vo/ V) 7/3_ (Vo/V)[)/3]11 - ~[( Vo/V)2/L 1]1, 

(21) 
where 

~= f(4- Bo') . 

Since the definition of strain (for strains larger than 
infmitesimal) is arbitrary, this equation has no par­
ticularly unique rebtion to elasticity theory. It does 
meet the requirements for an equation of state listed 
at the beginning of this section, provided 130' is greater 
than 4. 

Each of the equations enumerated above bas beert 
tried against the Hg volume data. 130 is fixed :It its 
independently detet111ined value at P= O. Each of the 
equations then has only one adjustable parameter, 
which may be expressed in terms of 130 '; this is chosen 
to give a minimum standard deviation . The deviations 
of these equations from the volume data are shown in 

42 F. Birch, J. App!. Phys. 9, 279 (1938). 
~3F . Birch, Phys. Rev. 71 , 809 (1947) . 
"F. D. Murnaghan, Am. J. Math. 59, 235 (1937). 
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